Factor-Labeling Method

(Dimensional Analysis)
Step 1: Identify the GIVEN quantity (unit)
Step 2: Identify the WANTED quantity (unit)
Step 3: Determine the CONVERSIONS needed to get from the given unit to the wanted unit
Step 4: SET UP THE PROBLEM so that the units that have to be cancelled are in a numerator
 and in a denominator
Step 5: CANCEL the unwanted units in the numerators and denominators to isolate the wanted unit
Step 6: MULTIPLY the numerators, and MULTIPLY the denominators and then DIVIDE the numerator by the denominator.

Example 1:

How many meters are in 8 feet?
Given: 8 feet
Wanted: Meters
Conversions: $1 \mathrm{~m}=3.28$ feet
$8 \mathrm{ft} \times \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}=? \mathrm{~m}$
$8 \mathrm{ft} \times \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}=\frac{8}{3.28} \mathrm{~m}=2.44 \mathrm{~m}$

Example 2:
Convert 5 gallons to milliliters
Given: 5 gal
Wanted: ml

Conversions: 1 gal $=3.79 \mathrm{~L}$
$1 \mathrm{~L}=10000 \mathrm{ml}$
5 gal $\times \frac{3.79 \mathrm{~L}}{1 \mathrm{gal}} \times \frac{1000 \mathrm{ml}}{1 \mathrm{~L}}=? \mathrm{ml}$

5 gat $\times \underline{3.79} \mathrm{t} \times \underline{1000 \mathrm{ml}}=\underline{5 \times 3.79 \times 1000} \mathrm{ml}=18950 \mathrm{ml}$ 1 gat 1t 1

Example 3

A doctor orders 250 mg of amoxicillin, which comes in a suspension of $25 \mathrm{mg} / \mathrm{ml}$. You need to give the dose in teaspoons (tsp). How many teaspoons of the suspension should you give?

Given: 250 mg
Wanted: teaspoons
Conversions: Given $25 \mathrm{mg}=1 \mathrm{ml}$
$1 \mathrm{tsp}=5 \mathrm{ml}$
$250 \mathrm{mg} \times \frac{1 \mathrm{ml}}{25 \mathrm{mg}} \times \frac{1 \mathrm{tsp}}{5 \mathrm{ml}}=$? tsp
$250 \mathrm{mg} \times \frac{1 \mathrm{ml}}{25 \mathrm{mg}} \times \frac{1 \mathrm{tsp}}{5 \mathrm{~m}}$.

Example 4

A doctor prescribes 10,000 units of heparin added to 500 ml of $\mathrm{D}_{5} \mathrm{~W}$ at 1,200 units/hour. How many drops per minute should you administer if the $1 . V$. tubing delivers $10 \mathrm{gtt} / \mathrm{ml}$?
Given: $\quad \frac{500 \mathrm{ml}}{10,000 \text { units }} \quad \frac{1200 \text { units }}{\text { hour }} \quad \frac{10 \mathrm{gtt}}{\mathrm{ml}}$

Wanted: gtt
minute
Conversions: $\frac{1 \text { hour }}{60 \mathrm{~min}}$

$\frac{10 \mathrm{gtt}}{1 \mathrm{mt}} \times \underset{10,000 \text { units }}{500 \mathrm{ml}} \times \frac{1200 \text { units }}{1 \text { hour }} \times \frac{1 \text { hour }}{60 \text { mins }}=? \underset{\text { minute }}{\mathrm{gtt}}=\frac{10 \times 500 \times 1200}{10,000 \times 60}=$ $\underline{6,000,000 \mathrm{gtt}}=\underline{10 \mathrm{gtt}}$ 600,000 minute minute

